The Underpinnings of Natural Community Ranking: A Presentation to Coastal Commission April 14, 2016

Todd Keeler-Wo

Senior Vegetation Ecologist Vegetation Classification and Mapping Program Biogeographic Data Branch

Main points:

- Describe the classification of vegetation / natural communities
- Explain meanings and significance of community ranks
- Define rarity ranking process for California Rare Natural Communities
- Discuss examples for the coastal zone

Dudleya (cymosa) – Lichen/Moss Sparse Herbaceous Alliance, Middle Anacapa Island

A Brief History of NC ranking in California

- CNDDB Natural Community shop first started based on Cheatham and Haller (1975) in 1983 (ca. 170 types)
- Expanded to Holland classification (1986-1995) [240 types]
- Began to translate to MCV/National Classification in 1996 at alliance level (280 alliances)
- Vegetation programs in CDFW and CNPS started in 1999-2000
- Revised through MCV2 (Sawyer et al., 2009), ongoing through DFW/CNPS Vegetation Programs and the US National Vegetation Classification
 - as of 2016 there are 500 alliances and ca. 2000 associations (all alliances ranked, most associations ranked at least basically into "rare or not")

- Based upon descriptive *ad hoc* categories and not well-suited for unambiguous definitions (square pegs)
- 2. Accumulated information primarily by incidental input
- 3. Ranking done by expert opinion (qualitative)
- Quantitative, defensible definitions.
 Inductive classification refinement
- Complete "wall-to-wall" information wherever new classification and mapping projects are undertaken
- 3. Rank calculation (as of 2012) done using rules and point weightings based on conservation factors. There is a backlog.

How is vegetation classified in California?

- The classification has evolved from a functional, but anecdotal community approach (the Holland system) in the mid-1980's to mid-1990's
- Now based on quantitatively driven National Vegetation Classification with well-defined 8-level hierarchy
- Measurable differences in species composition, structure, and landscape conditions are important to define the various levels and components of rarity ranking
- At which level do we address community rarity?
 - Alliance and Association levels (floristic, geographically specific)

Example: Associations of Coast Live Oak Alliance:

Range of Coast Live Oak

Alliance from MCV online

The Basis for Describing Vegetation (Natural Communities)

- Each vegetation unit is defined and described by sampling a group of stands
- with a common growth form and a constant set
- of diagnostic species
- including characteristic species of the dominant growth form,
- sharing a similar set of regional edaphic (soils), topographic, and disturbance factors.

Stands: the fundamental unit of vegetation classification

Have homogeneous plant species composition and vegetation structure with:

- A limited array of plant species and life-forms ordered by local environment including:
 - Limiting factors of moisture, temperature, exposure, soils and nutrition.
 - Historic dynamic natural processes such as fire, flood, storms, and disease.

Dominance

• Dominant species —

Species with the highest percent cover, usually in the uppermost dominant layer. Visually obvious, highest cover or biomass

Bishop Pine (*Pinus muricata),* locally dominant along the N. coast of California

Constancy — the percentage of sample plots in a given data set in which a species occurs

- Constant (species) —a species that occurs frequently in stands of a type
 - Constancy has been set at different levels for different studies (usually greater than 70% for alliances and associations).

Lemonade-berry (<i>Rhus integrifolia</i>) Association (n=14)							
Lifeform Shrub	Species Name	Con	Avg	Min	Max		
	Rhus integrifolia	100	48.2	14.0	85		
	Artemisia californica	86	4.8	0.2	20		
	Heteromeles arbutifolia	64	4.2	0.2	20		
	Diplacus aurantiacus ssp.	64	1.4	0.2	8		
	aurantiacus						
	Salvia mellifera	57	2.9	0.2	9		
	Malosma laurina	50	5.3	0.2	13		
	Encelia californica	43	0.8	0.2	3.20		
	Xylococcus bicolor	36	3.9	0.2	10		
	Opuntia littoralis	29	2.1	0.2	5		
	Rhamnus crocea	29	0.4	0.2	1		
	Eriogonum fasciculatum	21	1.7	0.2	4		
	* Nicotiana glauca	21	0.5	0.2	1		
	Ribes speciosum	21	0.5	0.2	1		
	Sambucus nigra ssp. cerulea	21	0.5	0.2	1		
Herb							
	* Bromus madritensis	43	3.4	0.2	8		
	Marah macrocarpus var.	36	0.9	0.2	2		
	, macrocarpus						
	Nassella lepida	29	1.1	0.2	3		
	Leymus condensatus	29	1.1	0.2	2		
	* Centaurea melitensis	29	0.4	0.2	1		
	* Foeniculum vulgare	21	0.2	0.2	0.20		

Diagnostic species

- **Diagnostic species** any species or group of species whose relative constancy or abundance differentiates one vegetation type from another.
 - A plant whose presence serves as a criterion of recognition of that community.
 - Based on predictable presence, persistence, and fidelity to restricted type(s) of vegetation
 - Diagnostic species are identified through statistical multivariate analysis, which relies on some measure of similarity/difference between vegetation samples.

Data is analyzed using cluster analysis and ordination, and summarized to develop descriptions

- Each of the groupings identified in this dendrogram should have one or more species that characterize the grouping.
- these become the diagnostic species listed in the specific name of a vegetation community.

Purple needlegrass [*Stipa (Nassella) pulchra*]: constant but not always dominant in stands

Nassella pulchra-Melica californica-Annual grass Association								
Stratum Herb	Code	Species Name	Con	Avg	Min	Max		
	NAPU4	Nassella pulchra	100	4.7	1	7		
	MECA2	Melica californica	100	4.3	1	10		
	BRHO2	Bromus hordeaceus	86	15.0	10	27		
	AVBA	Avena barbata	71	5.4	1	15		
	CAPY2	Carduus pycnocephalus	71	1.4	1	5		
	BRDI3	Bromus diandrus	57	5.1	5	18		
	ESCA2	Eschscholzia californica	57	0.8	0.2	4		
	AICA	Aira caryophyllea	57	0.6	0.2	2		
	LUBI	Lupinus bicolor	57	0.1	0.2	0.2		
	TRDE	Trifolium depauperatum	43	0.1	0.2	0.5		
	BRMA	Briza maxima	29	3.5	0.2	24		
	HYGL2	Hypochaeris glabra	29	2.9	0.2	20		
	TRBA	Trifolium barbigerum	29	1.3	2	7		
	FEID	Festuca idahoensis	29	0.7	0.2	5		
	ERBO	Erodium botrys	29	0.5	0.2	3		
	CHPO3	Chlorogalum pomeridianum	29	0.3	0.2	2		
	LOPE	Lolium perenne	29	0.3	1	1		
	MAGR3	Madia gracilis	29	0.3	1	1		
	PLNO	Plagiobothrys nothofulvus	29	0.3	1	1		
	ACMI2	Achillea millefolium	29	0.2	0.2	1		
	ELGL	Elymus glaucus	29	0.2	0.2	1		
	SABI3	Sanicula bipinnatifida	29	0.2	0.2	1		
	TRBI	Trifolium bifidum	29	0.2	0.2	1		
	VUMI	Vulpia microstachys	29	0.2	0.2	1		
	ANAR	Anagallis arvensis	29	0.1	0.2	0.5		
	SIMA2	Sidalcea malviflora	29	0.1	0.2	0.5		
	AMME	Amsinckia menziesii	29	0.1	0.2	0.2		
	DAPU3	Daucus pusillus	29	0.1	0.2	0.2		
	RACA2	Ranunculus californicus	29	0.1	0.2	0.2		
	SIBE	Sisyrinchium bellum	29	0.1	0.2	0.2		
	STAJ	Stachys ajugoides	29	0.1	0.2	0.2		
	TRPU16	Triphysaria pusilla	29	0.1	0.2	0.2		

12

Weighted factors considered in ranking natural communities:

Rarity

Range, Extent Area of Occupancy # of Occurrences (e.g. mapped stands) # of Occurrences with Good Viability/Ecological Integrity (stands of high quality) Percent Area with Good Viability/Ecological Integrity

*Environmental Specificity -used if # of Occurrences & Area of Occupancy are Unknown.

Guidelines for Rarity Ranks
G1 S1: Fewer than 6 viable occurrences
worldwide/statewide, and/or
up to 518 hectares
G2 S2: 6–20 viable occurrences
worldwide/statewide, and/or
more than 518–2,590 hectares
G3 S3: 21–100 viable occurrences
worldwide/statewide, and/or more than
2,590-12,950 hectares
G4 S4: Greater than 100 viable occurrences
worldwide/statewide, and/or more than
12,950 hectares
G5 S5: Demonstrably secure because of its
worldwide/statewide abundance

Overall Threat Impact

*Intrinsic Vulnerability - *Only* used if Overall Threat Impact is Unknown or Null

Pervasive = Affects all or most (71-100%) of occurrences Large = Affects much (31-70%) of occurrences Restricted = Affects some (11-30%) occurrences Small = Affects a small proportion (1-10%) of occurrences

Trends (only if repeat monitoring)

Short-term Trend 10-100 yrs.

Robustness of Rarity Ranks:

- Rarity- determined by range/distribution; grouped into 10 classes
- Rarity- determined by abundance and condition of occurrences (7 classes from 0->300)
- Viability/ecological integrity (most restrictive of these are ranked into 6 classes from fewest to most numerous in high condition)
- Threats <u>scope</u> (high to low; 4 categories) and <u>severity</u> (extreme to neutral or beneficial)
- Trends assessed with 20 yr. time frame for natural communities (not widely applied to vegetation in CA)
- There are ways to calculate G and S ranks without complete knowledge of:
 - number of occurrences and area of occupancy (based on environmental specificity)
 - Intrinsic vulnerability (threats and general trends)

How do we establish the rarity of a vegetation type?

- Identify types of vegetation through sampling and analysis in specific studies such as vegetation mapping projects
- Estimate extent of the type and refine through additional studies throughout its range
- Acreage and number of occurrences are quantified through detailed mapping of occupied areas
- Use G and S ranking rules with threat modifiers

Descriptions of vegetation types come from detailed studies such as the Santa Monica Mountains NRA

All vegetation types are defined and delineated in a standard way based on rules of classification giving wall-to-wall representation in the project area

Project mapping represents rare communities along side more common ones and enables accurate estimates of acreage and abundance

Rare Natural Communities of the Coastal Santa Monica Mountains

Current Extent of Vegetation Assessment in California

Carrizo Plain ER (CDFW) Carrizo Plain NM (BLM) Santa Clara River Parkway Santa Cruz Island Santa Monica Mountains NRA **Ballona Wetlands** Palos Verdes Western Riverside County Joshua Tree NP Western San Diego Co. San Dieguito River Parkway San Felipe WLA (CDFW) Anza-Borrego SP Oak Grove (CDFW) Vegetation Map in Support of the DRECP Vegetation Map in Support of the DRECP Vegetation Map in Support of the DRECP Channel Islands Sonoma County Eastern Sacramento Valley Natural Vegetation Garcia River Santa Lucia Preserve Fish Slough Mojave Desert National Preserve Death Valley NP Carrizo CDFW Extension Lava Beds NM West Sacramento Valley Natural Vegetation **Orange County** Western Riverside County remap Cabrillo NM Liberty Island Remap Southern San Joaquin Valley Habitat Linkage Southern Sierra Nevada Foothills Canada de San Vicente Marin County Open Space District Vegetation for the DRECP Rice Valley extension Manzanar NHS Proposed Tehachapi Pass High Speed Rail Corridor Vegetation Map Knoxville WLA (CDFW) Johnson Valley Integrated Mapping **Ciervo Panoche North** Western Madera County McKenzie Preserve at Table Mountain San Nicolas Island Mill Creek Cow Creek Vegetation for the DRECP Silurian Valley Soda Mtns. Mesquite Lake extension Vegetation for the DRECP Rice Valley extension 2 Vegetation for the DRECP Chuckwalla Bench - Southern Imperial Co. extension Canada de los Osos ER (CDFW) Eastern San Joaquin Valley San Joaquin River Restoration Program Pygmy Forest mapping Vegetation Mapping of Peninsular Bighorn Sheet Habitat Vegetation for the DRECP Imperial Co. module 4 extension Vegetation for the DRECP Whipple Mtns. module 4 extension Vegetation for the DRECP Cadiz Valley module 4 extension Vegetation for the DRECP 29 Palms module 4 extension Point Mugu Naval Air Station Great Valley Extension Likely, Shinn, and Snowstorm Mountains

San Diego Tiju ana Mexico Surces: E sri, DeLorme, USGS, NPS, Sources: E sri, USGS, NOAA, USGS The National Map: National Boundaries Elevation Dataset, Geographic Names Information System, National Hydrography Dataset, National Land Cover Da Structures Dataset, and National Transportation Dataset; U.S. Census Bureau - TIGE R/Line; HERE Road Data

Walking through the ranking of Ashy Buckwheat Alliance and Association: Step 1 - Description

Eriogonum cinereum Shrubland Association

Ashy Buckwheat Shrubland Association Eriogonum cinereum Shrubland Alliance Ashy Buckwheat Shrubland Alliance

Mapping Code: 3257

Local Description

Summary:

This shrubland association occurs on moderate to abrupt southwest-facing slopes at low elevations between 0-500 m. It is characterized by a dominance of Eriogonum cinereum in the shrub layer. The herbaceous layer has no characteristic species. The emergent tree layer is generally absent but can include Quercus agrifolia and Umbellularia californica.

Distribution:

This association is sampled in the Dry Inland, Upper Elevation Santa Monica Mountains, Western Fog Zone, Immediate Coast, and Lower Elevation Inland Santa Monica Mountains regions of the study area.

Environmental Description:

Elevation: range 0-500 m, mean 289.5 m Aspect: southwest Slope: range 9-80 degrees, mean 35.6 degrees Topography (micro; macro): undulating, flat, or convex; lower to upper slope Litter Cover: range 10-35%, mean 16.7% Small Rock Cover: range 3-46%, mean 23.1% Large Rock Cover: range 0-85%, mean 17.1% Bare Ground: range 0-65%, mean 27.8% Parent Material: sedimentary Soil Texture: moderately fine clay loam

Vegetation Description:

Stands of Eriogonum cinereum Shrubland form an open to intermittent shrub layer (3-37%, mean 18.5%). Shrubs occur in two different strata with low shrubs at 0-2 m tall and tall shrubs at 0-5 m tall. The herbaceous layer is open (0-33%, mean 10.7%) at 0-2 m tall. Trees are occasionally emergent (0-2% cover, mean 0.1%) with hardwoods at 0-10 m tall. Total vegetation cover is 6-47%, mean cover is 29.2%. Herb

In this association, the shrub layer is characterized by Eriogonum cinereum. Artemisia californica is usually present. Yucca whipplei, Salvia mellifera, Malosma laurina, and Lotus scoparius are occasionally included in this layer. The tree layer is emergent and open and may infrequently include Quercus agrifolia at low cover. The herbaceous laver is diverse and sometimes includes Brassica nigra, Centaurea melitensis, Bromus madritensis, Leymus condensatus, Bromus diandrus, and Hirschfeldia incana.

Samples Used in Description: (n = 48)

AA0016cc, AA0276cc, AA0504, AA0624, AA0743cc, AA0750cc, AA0858, AA0954, AA1159, AA1161, AA1175, rap0073, rap0093, rap0137, rap0161, rap0389, rap0390, rap0420, rap0463, rap0499, rap1249, rap1250, rap1302, rap1323, rap1367, rap1389, rap1391m, rap1711, rap1722, rap1741, rap1800, rap1804, rap1813, rap1814, rap1819, rap1872, rap1877, rap1927m, rap1947, rap1995, rap1996, rap2000m, rap2127, rap2128, rap2200, rap2586, rap2713, rap2722

Comments:

Eriogonum cinereum Association

Layer Code

ERCI5

ARCA11

SAME3

YUWH

LOSC2

MALA6

SALE3

ENCA

BRCA3

HEAR5

RHOV

BRNI

CEME2

BRMA3

LECO12

HIIN3

BRDI3

Shrub

This is an endemic alliance and association to the Ventura region of California and probably has most of its area represented within the SAMO study area. It is characteristic of steep usually southerly facing slopes below 600 m elevation and is often found on rocky or eroded cliffs. An early seral (postfire) phase has been identified with a higher cover of Malacothamnus fasciculatus and Levmus condensatus.

> CONSERVATION STATUS RANK G3S3

Global Description

Distribution: This association is only known from the Santa Monica Mountains region. Information about its global distribution is not available without additional inventory.

								global distribution is not available without additional inve
Species Name	Con	Avg	Min	Мах	A	С	N	Nations: United States
Eriogonum cinereum	98	10.9	0.2	25.0		Х		States or Provinces:
Artemisia californica	71	1.5	0.2	8.0				CA
Salvia mellifera	38	0.4	0.2	5.0				
Yucca whipplei	38	0.2	0.2	2.5				
Lotus scoparius	35	1.0	0.2	24.0				
Malosma laurina	35	0.7	0.2	6.0				
Salvia leucophylla	31	0.6	0.2	10.0				())
Encelia californica	23	0.4	0.2	4.0				
Brickellia californica	21	0.3	0.2	2.5				NE S Cont
Heteromeles arbutifolia	21	0.2	0.2	2.5				martin Bis and
Rhus ovata	21	0.2	0.2	3.0				() in the Market
								distant and the state
Brassica nigra	50	1.6	0.2	12.0			Х	Chiperin Mana
Centaurea melitensis	38	1.8	0.2	15.0			Х	the Martin
Bromus madritensis	31	1.3	0.2	20.0			Х	Marin Marine
Leymus condensatus	25	0.8	0.2	12.0				2
Hirschfeldia incana	21	0.7	0.2	15.0			Х	V
Bromus diandrus	21	0.7	0.2	8.0			Х	

Expression of *Eriogonum cinereum* vegetation in Santa Monica Mountains

Step 2: Extrapolate range from existing data on diagnostic species ; e.g., Botanical Collections of *Eriogonum cinereum*

22

Consider "occupied area": Much of coastal southern California is urban and unoccupied by any natural vegetation

Report general ecological range of *Eriogonum cinereum* association and alliance (as shown in MCV2 online). Assume it is broader than current actual vegetation occupancy.

Total number of stands and acreage known as of description: Count: 350 Minimum size: 0.32 Maximum: 36.57 Sum: 924.21 Mean: 2.64

Total estimated range un-sampled: 66%

2010 estimate: Eriogonum cinereum Ashy buckwheat scrub Alliance G3? S3? 24

Step 3: Assessing ecological integrity and threats- new information

- New mapping shows Palos Verdes *Eriogonum cinereum* vegetation occurrences aren't high-rated.
- All are fragmented and surrounded by development, but these stands are southern-most known, ecologically significant, and some protected
- Also throughout range fountaingrass is a threat in some stands
- moderate threats to about 25% of known stands

Step 2: Refinement of distribution and rarity from other detailed vegetation maps.

An example of existing site quality: Non-native species composition in *Nassella pulchra* South Coast Association (n=19)

Lifeform Shrub

Herb

- RANK G3 S3.2
 - Diagnostic species only from 2-25% cover.
 - Sometimes the non-native species are higher cover than the natives
 - Non-native plant relative cover proportion: 64%
 - Half of the top constant species are non-native,
 - This is the <u>norm</u> for this community today
 - Quality is assessed more by size and "edge-effects", than % native cover

ו	Code	Species Name	Con	Avg	Min	Max	Diagnostic
	ISME5	Isocoma menziesii	53	1.0	0.2	3	
	ERFA2	Eriogonum fasciculatum	53	0.3	0.2	1	
	ARCA11	Artemisia californica	32	0.6	0.2	2	
	BASA2	Baccharis sarothroides	26	0.7	0.2	2	
	LOSC2	Lotus scoparius	21	2.1	0.2	5	
	MALA6	Malosma laurina	21	1.9	0.2	5	
	NAPU4	Nassella pulchra	100	9.7	2.0	25	x
	BRMA3	* Bromus madritensis	47	6.1	0.2	20	
	BRHO2	* Bromus hordeaceus	47	3.6	0.2	18	
	CASP	Calochortus splendens	47	0.7	0.2	2	
	CEME2	* Centaurea melitensis	47	0.5	0.2	2	
	ERBO	* Erodium botrys	42	19.4	2.0	70	
	BRDI2	* Brachypodium distachyon	42	9.8	0.2	22	
	BRDI3	* Bromus diandrus	42	9.8	0.2	38	
	AVBA	* Avena barbata	42	5.1	0.2	18	
	SIBE	Sisyrinchium bellum	37	0.8	0.2	3	
	HIIN3	* Hirschfeldia incana	37	0.5	0.2	2	
	AVFA	* Avena fatua	32	16.5	0.2	30	
	VUMY	* Vulpia myuros	32	5.3	0.2	20	
	LOPEM2	* Lolium perenne ssp. multiflorum	32	4.2	0.2	19	
	AMPS	Ambrosia psilostachya	32	2.1	0.2	10	
	CYCA	* Cynara cardunculus	26	4.3	0.2	18	
	DISP	Distichlis spicata	26	4.2	0.2	8	
	HEFA	Deinandra fasciculata	26	0.7	0.2	2	
	BLCRC	Bloomeria crocea var. crocea	21	4.3	0.2	8	
	HYGL2	* Hypochaeris glabra	21	1.9	0.2	5	
	COFI2	Corethrogyne filaginifolia	21	1.4	0.2	3	
	ERCI6	* Erodium cicutarium	21	1.4	0.2	4	
	DICA14	Dichelostemma capitatum	21	0.7	0.2	2	

27

Summary plot and classification data leads directly into identification: *Stipa pulchra* key differences for Orange County Vegetation:

19. Vegetation is **dominated** or **characterized** by a mixture of native perennial grasses and annuals in upland settings, *with the native grasses and forbs usually making up >10% relative cover of the herbaceous layer*. Non-native herbaceous species may have a significant presence, but are **not considered diagnostic as they are ubiquitous across the study area**.

19a. *Stipa pulchra* characterizes stands alone or in shared dominance with other native and non-native grasses and forbs. A variety of emergent shrubs may be present.

Stipa pulchra Association

19b. *Stipa lepida* characterizes stands alone or in shared dominance with other native and non-native grasses and forbs. A variety of emergent shrubs may be present.

Stipa lepida Association

What is the threshold between native and non-native grassland?

- Herbaceous vegetation strongly dominated by non-native grasses and forbs such as Avena, Brachypodium, Brassica, Briza, Bromus, Centaurea, Cynosurus, Danthonia pilosa, Erodium, Lolium, Raphanus and Stipa manicata.
 Native herbaceous species have insignificant cover in stands, especially during the active growing season. Stands are found in foothills, rangelands, fallow fields, woodland openings, riparian areas, and disturbed settings.
- Mediterranean California Naturalized Annual and Perennial Grassland Group

Needlegrass (*Stipa* sp.) grassland mapping in Orange <u>County: Can it be trusted for accuracy</u>?

- 682 Acres mapped two associations noted
- 0.8% of total mapped area
- Much less frequent in the Coastal Zone than in Santa Ana Mtns. Where small (many < MMU) stands do occur

Mapped unit	Accuracy score
Stipa lepida Association	94
Stipa pulchra Association	93
	30

Example of application of site quality: *Leptosyne* (*Coreopsis*) gigantea Allliance online MCV <u>http://vegetation.cnps.org/alliance/179</u>

31

Summary stats. for detailed mapping projects: acres and size distributions of stands of Giant Coreopsis alliance

Selection Statistics of Santa_Monica_Mountains_NRA

G and S rank for *Coreopsis gigantea* Alliance as of 2010: G3S3?

For *Coreopsis gigantea-Artemisia californica-Eriogonum cinereum* Association: G1 S 1.2

Vegetation occurrences are rated on several components of quality

Larger, but lower quality stand, (based on invasive species and adjacent development and disturbance) Pt. Dume

Small, but high quality stand near. Camarillo. Ventura Co.

A focused rare natural community project: quantifying and strengthening information on Mendocino Pygmy Forest Ecosystem

Hesperocyparis pigmaea Woodland Alliance Mendocino pygmy cypress woodland

Characteristic Species

Hesperocyparis pigmaea is dominant or co-dominant in the tree canopy with Pinus contorta ssp. bolanderi, Pinus muricata and Sequoia sempervirens. Shrubs of heights similar to the cypress may include Arctostaphylos columbiana, Arctostaphylos nummularia, Gaultheria shallon, Rhododendron columbianum, Rhododendron macrophyllum or Vaccinium ovatum.

Vegetation Layers

Trees < 2 m; canopy of trees is open to intermittent. Shrub layer is open to intermittent. Herbaceous layer is sparse. Lichens and mosses occur on the soil surface and on the woody plants as epiphytes.

Membership Rules

• Callitropsis pigmaea dominates the tree canopy (Westman 1975).

Habitats

Uplifted marine terraces and associated sandstone. Soils are acidic spodosols of the Blacklock soil series with cemented hardpans that are seasonally flooded.

Other Habitat, Alliance and Community Groupings

MCV (1995):	Pygmy cypress series
NVCS (2009):	Cupressus goveniana shrubland alliand
Calveg:	Pygmy cypress
Holland:	Mendocino pygmy cypress forest
Munz:	Closed-cone pine forest
WHR:	Closed-cone pine-cypress
CDFW CA Code:	81.400.00

National Vegetation Classification Hierarchy

Formation Class:	Mesomorphic Tree Vegetation (Forest and Woodla
Formation Subclass:	Temperate Forest
Formation:	Warm Temperate Forest
Distate	

USDA Ecological Section Map

ri, DigitalGlobe, GeoEve, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Summary Information

- Primary Life Form: Tree
- Elevation: 25-150 m
- State Rarity: S2
- Global Rarity: G2
- Distribution: USA: CA (NatureServe) (Calflora)
- Endemic to California: Yes
- Endemic to California Floristic Province and Deserts: Yes
- Date Added: 1995/11/01

Goal of Project: Refine understanding of pygmy cypress alliance and associations based on sampling within the full distribution of pygmy ecosystem including:

- Soils mapping
- Geomorphic surface (marine terrace) mapping
- Previous vegetation mapping
- Wetland mapping
- Indicator species' distribution

New understanding of Pygmy Cypress Forest (from 2015-2016 data analysis:

• Composed of 3 associations of *Hesperocyparis pigmaea* alliance (Total acreage is less than 3000) all ranked G2S2.1:

Hesperocyparis pigmaea-Pinus contorta bolanderi/Rhododendron columbianum

Hesperocyparis pigmaea-Pinus contorta ssp. bolanderi-Pinus muricata/Rhododendron macrophyllum

Hesperocyparis pigmaea-Pinus muricata/Arctostaphylos nummularia

- Plus 3 wider ranging associations of different alliances endemic to oligotrophic soils of N. and Central CA Coast:
 - Arctostaphylos nummularia (Arctostaphylos glandulosa Rhododendron macrophyllum (G2S2.2)
 - Pinus muricata-Chrysolepis chrysophylla/Arctostaphylos nummularia (G2 S2.2)
 - Chrysolepis chrysophylla / Vaccinium ovatum (G3S3.2)

Summary: Vegetation Rarity Ranking:

- Similar to rare species ranking
- Best done using quantitative definitions and range-wide vegetation mapping
- Rank status updating will be ecoregional (underway in South Coast this spring)
- Online Natural Communities <u>http://www.dfg.ca.gov/biogeodata/vegcamp/natural_communities.asp</u>
- New types are defined by repeated sampling and quantitative definition available at: <u>http://www.dfg.ca.gov/biogeodata/vegcamp/veg_classification_reports_maps.asp</u>
- Descriptions available online for the range of all major alliances (<u>http://vegetation.cnps.org/</u>)
- For background on ranking see: NatureServe Conservation Status Assessments: Factors for Evaluating Species and Ecosystem Risk <u>http://www.natureserve.org/sites/default/files/publications/files/natureserveconservationstatusfa</u> <u>ctors_apr12.pdf</u>
- For best current California Natural Community ranking information contact VegCAMP program (<u>Todd.Keeler-Wolf@wildlife.ca.gov</u>, <u>Diana.Hickson@wildlife.ca.gov</u>)